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FORENORD 

This document i s  one of s ixteen sect ions t h a t  comprise the  f i n a l  
report prepared by the  Minneapolis-Honeywell Regulator Company f o r  t he  
National Aeronautics and Space Administration under contract  NASw-563. 
The repor t  i s  issued i n  the following sixteen sect ions t o  faci l i ta te  
updating as 

1541-TR 1 

1541-TR 2 

1541-TR 14 

1541-TR 15 

1541-TR 16 

progress warrants: 

s-ry 

Control of Plants Whose Representation Contains Derivatives 
of the Control ‘Variable 

Modes of F in i t e  Response Time Control 

A Suf f ic ien t  Condition i n  Optimal Control 

Time O p t i m a l  Control of Linear Recurrence Systems 

Time-Optimal Bounded Phase Coordinate Control of Linear 
Recurrence Systems 

Penalty Functions and Bounded Phase Coordinate Control 

Linear Programming and Bounded Phase Coordinate Control 

Time Optimal Control with Amplitude and Rate Limited Controls 

A Concise Formulation of a Bounded Phase Coordinate Control 
Problem as a Problem i n  the  Calculus of Variations 

A Note on System Truncation 

S ta t e  Determination for a Flexible Vehicle Without a Mode 
Shape Requirement 

An Application of the Quadratic Penalty Function 
t o  the  Determination of a Linear Control for a Flexible Vehicle 

Minimum Disturbance Effects  Col;ljtrol of Linear Systems with 
Linear Controllers 

An Alternate Derivation and In te rpre ta t ion  of the  D r i f t - M i n i m u m  
Principle 

A Minimax Control f o r  a Plant Subjected t o  a Known Load Disturbance 

Cr i te r ion  

Section 1 (l54l-TR 1) provides the  motivation f o r  the  study e f f o r t s  
The and object ively discusses the significance of the r e s u l t s  obtained. 

r e s u l t s  of inconclusive and/or unsuccessful invest igat ions are presented. 
Linear programming is  reviewed i n  d e t a i l  adequate f o r  sect ions 6, 8, and 16. 

It is  shown i n  sect ion 2 tha t  the p r e l y  formal procedure f o r  synthe- 
s i z ing  an optimum bang-bang control ler  f o r  a plant  whose representation 
contains der ivat ives  of the  control var iable  y ie lds  a cor rec t  r e su l t .  
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In section 3 it is shown that the problem of controlling m components I 
I 
l 

(1 < m < n),, of the state vector for an n-th order linear constant coefficient 
plant, To zero in finite time can be reformulated as a problem of controlling 
a single component. 

Section 4 shows Pontriagirfs Maximum Principle is often a sufficient 
condition for optimal control of linear plants. 

Section 5 develops an algorithm for compting the time optimal control 
functions for plants represented by linear recurrence equations. 
may be to convex target sets defined by quadratic forms. 

Steering 

In section 6 it is shown that linear inequality phase constraints 
can be transformed into similar constraints on the control variables. 
Methods for finling controls are discussed. 

Existence of and approximations to optimal bounded phase coordinate 
controls by use of penalty functions are discussed in section 7. 

In section 8 a maximum principle is proven for time-optimal control 
with bounded phase constraints. An existence theorem is proven. The 
problem solution is reduced to linear programming. 

A backing-out-of-the-origin procedure for obtaining tra3ectories for 
time-optimal control with amplitude and rate limited control variables is 
presented in section 9. 

Section 10 presents a reformulation of a time-optimal bounded phase 
coordinate problem into a standard calculus of variations problem. 

A mathematical method for assessing the approximation of a system by 
a lower order representation is presented in section 11. 

Section 12 presents a method for determination of the state of a 
. flexible vehicle that does not require mode shape information. 

The quadratic penalty function criterion is applied in section 13 to 
develop a linear control law for a flexible rocket booster. 

In section 14 a method for feedback control synthesis for minimum load 
disturbance effects is derived. Examples are presented. 

Section 15 shows that a linear fixed gain controller for a linear 
constant coefficient plant may yield a 'certain type of invariance to 
disturbances. 
the concept of complete controllability. 
obtained as a specific example. 

Conditions for obtaining such invariance are derived using 
The drift minimum condition is 

In section 16 linear programming is used to determine a control function 
that minimizes the effects of a known load disturbance. 



ABSTRACT 

INTRODUCTION 

SYNTHESIS 

CONCLUSIONS 

REFERENCES 

TABLE OF CONTENTS 

1 

1 

2 

5 
6 



-1- 

TIME-OPTIMAL CONTROL OF 

LINEAR RECURRENCE SYSTEMS* 

By E. B. Lee $ 

57 ABSTRACT 

h algsrithrr! I s  developed to compute the time-optimal 

control functions for plants represented by linear recurrence 

equations. Steering may be t o  convex sets defined by quadratic 
forms . 4 d 7 - f f 6 4  

INTRODUCTION 

A computational procedure is developed to determine a control 

for a linear recurrence equation system so that its solution 

passes from an initial point to a prescribed target (set of points) 

in the minimum number of  stages. This is an approximation to the 

time optimal control associated with differential equation systems. 

The method of solution is essentially one proposed by Ho (reference 1) 

for systems satisfying differential equations and modified by 

Eaton (reference 2). The results, in particular the notation of 

reference 3, will be used. 
The plant model is given by the real linear recurrence equation 

x(r+l) = A(r)x(r) + B(r)u(r) (1) 

where x(r), an n vector, is the system state; u(r), an m vector, 

is the control, A(r), B(r) are bounded matrices of size nxn and 

nxm respectively; and r = 0,1,2 ... denotes the stage of the 
evolution. It is assumed that luk(r)l - (1; k = 1,2,0.0m; r = O , l , . . .  . 
The initial data are denoted by xo = x(0)  and the target set is 

denoted -------- by ------ G = {~kt.) f cy c is a constant). 
* Prepared under contract NASw-563 for the NASA. 
3 f :  Research Consultant, Minneapolis-Honeywell Regulator Company, 
Minneapolis, Minnesota 

In the wrk presented 
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here g is  assumed t o  be of quadratic form, tha t  i s ,  

G = {xlx-Hx - < c y  c > 0 and H = H* > 0). 
The problem t o  be solved requires the determination of a 

control sequence u = [u(O) , u( 1) , .. .u(r-1) 1 t o  s t e e r  the response 

x ( r )  from xo t o  G i n  the minimum number of stages r, 

SYNTHESIS 

If W ( r )  i s  such that W ( r + l )  = A ( r ) W ( r ) ,  r = 0,1,2..., and 

W ( 0 )  = I, then equation 1 can be rewrit ten as 

r 

j=l 
x ( r )  = W ( r )  xo + W ( r )  ,Z W - l ( j )  B(j-1) u( j -1) .  (2) 

A posit ive def in i te  function 

v (x )  = x-Hx (3) 

(4 )  

and an e r r o r  function 

E ( x )  = X*HX - c 

a re  introduced, The first r > 0 must be determined such tha t  

E(x) = 0 f o r  some x ( r )  = x belonging t o  the s e t  of a t t a i n a b i l i t y  

K(r,xo). 

which i n i t i a t e  a t  xo for a l l  controls lu ( J ) I  - < 1; k = 1 , 2 e . . m ;  

K(r,xo) i s  the collection of end points of responses x ( r )  
k 

j = 0 , l Y e . .  r-1. 

eonvex, nonempty subset of Rn and therefore a t  each stage 

r - > 0 ( r  < 13 = optimum r )  there i s  a unique point 

x = x ( r )  E K(r,xo) which minimizes E ( x ) .  

found f o r  which E(x) k 0 f o r  some x E K(rW,xo) an optimum control 

sequence i s  known. 

According t o  reference 3,K(r,xO) i s  a closed, 

When an r, say @, i s  

A computational scheme i s  now devised f o r  finding the 

x E K(r,xo) which minimizes V(x) for fixed r > 0, The procedure 
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f o r  increasing r i s  obvious. 

A parameter t i s  introduced i n  equation 2 t o  yield 

x ( r , t )  = W(r)(xo + c W-’( j ) B (  j - l ) u (  j-1,t)) 
j=1 

From t h i s  equation 

r 
C W(r)W-’(  j ) B (  j-1) ;( j-1,t). 

j=l 
?(r,t) = 

For the remaining discussion it i s  assumed tha t  m=l. The re- 

s t r i c t i o n  i s  eas i ly  removed. 

Equation 3 i s  rewritten as  

r 
x n(  j )  u( j-l,t) 

j=1 
x ( r , t )  = W(r)xo + 

where h( j )  = W(r)W-’( j ) b ( J - l )  . 
V ( x ( r , t ) ) ,  and therefore E(x) w i l l  be minimized by driving 

each u ( j -1 , t )  according t o  

(5) 

(8 1 @(j-I,t) d = C ( j - l , t )  = gJ-’(x(r, t)) .  

The functions g j” (x( r , t ) )  w i l l  be selected i n  an obvious manner 

a f t e r  the following calculation: 

r 

j=1 
= Z h ( j ) G ( j - l , t ) * H x ( r , t )  

= 2 E G ( j - l , t ) h ( j ) * H x ( r , t )  
j=1 

( 9 )  

Then 
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i f  u( j - l , t ) h (  j )  *Hx(r,t)> 0 

where each f3 ( 2 )  i s  a positive constant.  heref fore, 

. 
It will now be shown that V i s  i n  f ac t  l e s s  than zero except a t  

~, the optimum point.  This then establishes the requires property. 

Suppose V(x) = 0 for x i n t e r i o r  t o  K(r,xo). T h i s  can 

happen only i f  

u ( j - 1 , t )  = - sgn (h(j)  *=(r,t)F 

or 

h( j ) .Hx(r , t )  = 0 

for a l l  j = OJlYeo.r (x = 0 4 K(ryxO).  From reference 3 theorem 1 

the response t o  any extrema1 control,  v ( j )  = sgn([W-l(j)b(j-l] 9,) 

is  a point on the  boundary o f  K(r,xo). 

the above control i s  an extrema1 control and hence must lead t o  a 

When v0 = - W ( r )  H x(r,t) 

response 

V 4 O i f  
4 

For 

end point x ( r , t )  on boundary of K(r,xo). 

x ( r , t )  I s  i n t e r io r  t o  K( ryxo)*  

points on the boundary of K(r,xo), V = 0 only i f  

Therefore 

u ( j - L t )  = - sgn(h(j)  *Hx( r , t ) )  

h(j)-Hx(r, t)  = 0 

f o r  j = 1,2...r. If x ( r , t )  i s  on the boundary of K(ryxo) ,  then 
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according t o  reference 3 the control which gave r i s e  t o  x ( r , t )  

i s  e c e s s a r i l y  an extrema1 control with qr = [W-’(r)]’?, an 

ex ter ior  normal t o  K(r,xo) a t  the corresponding point x ( r , t )  on 

boundary K(r,xo). Hence f o r  qo = - W ( r ) H  x ( r , t )  the vector 

-[W-’(r)]’W’(r)H x ( r , t )  = - H x ( r , t )  

must be an ex ter ior  normal t o  K($,xo) at x ( r , t >  on the b~-mdal-.;. 

of K(r,xo),  

then 

T h i s  can only occur i f  x ( r , t )  = +, because only 

i s  Hx  a vector orthogonal t o  the surface V(x) = constant. 

Therefore V < 0 unless x = x* and V(x(r,t))->V(*) as t->oo , 

The only change for r = I? i s  the poss ib i l i t y  of x(rcle,t)->O 

i n  K ( @ , x o ) ,  but i n  t h i s  case the only point of K(P ,xo)  a t  

which V = 0 i s  s t i l l  + with some p o s s i b i l i t y  t h a t  i s  i n t e r i o r  

t o  K(P ,xo) .  

i n t e r i o r  point of c). 

For the targets  under consideration x = 0 i s  an 

O p t i m u m  control can now be found by increasing r one s tep  a t  

a time and finding the point of K(r,xo) where E(x) i s  a minimum. 

When E(x) - < 0 f o r  r = rclc an optimum control i s  known. 

The r e s u l t s  apply equally well t o  t a rge t  s e t s  which are t i m e  

varying, that  i s ,  G = G(r). 

CONCLUSIONS 

A method for making corrections to the control required f o r  

time optimal control t o  convex ta rge t  s e t s  has been developed, 

It was shown tha t  the computation of corrections based on t h i s  scheme 

w i l l  converge , 
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